A Decoder Architecture for High-Speed Free Space Laser Communications

Mike Cheng, Mike Nakashima, Jon Hamkins, Bruce Moision, and Maged Barsoum
Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA
{mkcheng, michael.a.nakashima}@jpl.nasa.gov

SPIE Photonics West January 26, 2005 San Jose, CA

Outline

- An optical communication system
- The Serial Concatenated Pulse-Position Modulation (SCPPM) Code
- The Soft-In Soft-Out (SISO) decoding algorithm
- Contributions in FPGA implementation of the SISO decoder
 - I. Computing the Super Gammas to handle parallel trellis edges
 - 2. An efficient implementation of the maxstar Look-Up-Table
 - 3. Non-blocking interleaver and deinterleaver design.
 - 4. Fast clipping circuit for quantization.
- Hardware speed and throughput

An optical communication system

Our focus is only on the encoder and decoder.

SCPPM Encoder

- Serial concatenated pulse-position modulation (SCPPM) encoder
- An outer (5,7) rate 1/2 convolutional code
- An inner accumulate and PPM mapping.
- Possible PPM orders M = 32, 64, or 128

The Inner Code

- Accumulator with anti-Gray bit-to-symbol mapping.
- The inner code is described by a 2-state trellis with M/2 edges between connecting states.

The Outer Code

- The (5,7) convolutional code with rate 1/2.
- The code is described by a 4-state trellis with input/output: $u/c_1,c_0$

Soft-In Soft-Out (SISO) Decoding

- The BCJR algorithm is used to traverse the trellis and calculate:
- The joint probability that the state is i(e) at time k-I and the sequence y_1^{k-1} is observed -- $\alpha_{k-1}(i(e))$
- The conditional probability that the sequence y_k^n is observed starting at time k given current state is t(e) -- $\beta_k(t(e))$
- ullet The conditional probability that the transition y is observed given the state pairs i(e) and t(e) -- $\gamma_k(e)$
- The probability of edge e at time k given observation at all times -- $\lambda_k(e)$

Decoder Architecture

- Apply the BCJR algorithm to the inner and outer trellis.
- The bit Log Likelihood Ratios (LLRs) are calculated from the metric $\lambda's$
- Iterate between the inner and outer decoder to refine the overall bitdecision.
- Use the log-domain approach to avoid multiplication and division.

The Maxstar Operation

$$\max^*(x, y) = \max(x, y) + \log(1 + e^{-|x-y|})$$

Can pre-compute the log term in maxstar and store in a Look-Up-Table (LUT)

Super Gammas

 We can group the parallel gammas into a super gamma and use a pipelined maxstar to compute the super gammas in one clock cycle for the forward and backward recursions.

Block Diagram of Inner Decoder

- Use of partial statistics to reduce data transfer from receiver.
- The outer decoder consists of similar data flow.

De-interleaver Design

No read conflicts will occur using our mapping.

Inner code generates 6 LLRs per clock cycle.

 The LLRs are written sequentially into the de-interleaver.

The outer code fetches 2 LLRs per clock. This read is done by finding the 2 distinct rows that contain the LLRs and selecting the right one out of the 6.

Interleaver Design

- Partition Interleaver into 6 distinct memories
- Write permuted the 2 LLRs generated by the outer code in one clock into the BRAMs
- Our mapping prevents write conflicts
- Even if there were, the dual-ported BRAM can handle simultaneous writes

FPGA Implementation - Quantization Effects

 FPGA implementation requires all floating-point values to be quantized stored as fix-point numbers:

$$q \in [-2^{w-p-1} + 1, 2^{w-p-1} - 1]$$

- w determines dynamic range and p determines decimal precision
- Simulations indicate w=5 and p=3 would lead to a signal energy loss less than 0.2 dB from floating point performance.

FPGA - Memories and Circuits

- We designed a fast clipping circuit to quantize only the log alphas and betas. The other metrics are allowed to grow.
- The maxstar LUT for p=3 has only 21 3-bit entries and this allowed for implementation as ROMs using Xilinx's distributed RAMs.
- Other storage elements such as ones for the betas and channel LLRs are implemented using Xilinx Block RAMs (BRAMs).

Hardware Specifications

- The SCPPM decoder for M=64 is implemented on a Xilinx Virtex II 8000 grade 4 which sits on a Nallatech BenDATA WS board.
- Xilinx place and route reported design has 6.5 million gates.

Full	used/total	utilization	Inner	Outer	Interleavers
Decoder			Decoder	Decoder	& others
BRAM	101/168	60 %	19 % of total	9 % of total	32 % of total
Flip Flops	17311/ 93184	18 %	16 %	I %	I %
Slices	30174/ 46592	64%	52 %	6 %	6 %

Speed and Throughput

 Assuming 7 average iterations, we can obtain the clock speed and calculate the throughput for various FPGA parts.

Part Number	Maximum Clock	Data Rate
Virtex II 8000 - grade 4	I7 MHz	0.907 Mbps
Virtex II 8000 - grade 5	23 MHz	I.23 Mbps
Virtex II - Pro	28 MHz	1.5 Mbps

Summary

- Presented an FPGA implementation of an SCPPM decoder for Deep Space Laser communication.
- Contributions in Super Gammas pipelining, reducing quantization effects, non-blocking interleaver/de-interleaver designs, and a fast clipping circuit are made.
- Potential decoder improvements can be made:
 - Applying window-based BCJR to inner and outer decoder for a possible 2 and 4 times the speed up respectively.
 - 2. Building on a larger FPGA part such as the Virtex IV which is already available on the market and could double the speed.
- Using a baseline of 1.5 Mbps, the final design could in principle deliver 24
 Mbps and this translates into a 50 Mbps SCPPM decoder that can fit onto 3 FPGAs.

